Aquatic Weed Control Techniques

Gray Turnage, PhD

Mississippi State University

Cooperative Extension Service & Geosystems Research Institute

Gturnage@gri.misstate.edu

www.gri.msstate.edu

Nonindigenous vs. Native Community

Alternanthera philoxeroides Alligatorweed

Getting a Good Plant ID:

- This is first step in Management:
 - Publication Guides
 - Online Keys
- Experts Send Photos or Live plant
- A number of people can identify aquatic plants in your region
 - Your Extension agent or specialist likely knows who they are

Applicator preparing to treat a storm water retention pond overgrown with water lettuce

Getting a Good Plant ID:

- Live Plant
 - Wrap in damp paper towel
 - Place in Ziploc bag
 - Ship on ice overnight to MSU
- Sending good quality digital photos are best way to get a good ID
 - Flower
 - Close-Up
 - Habitat

Getting a Good Plant ID:

- Proper identification is critical to selecting the correct herbicide
 - E.g., Aquathol K (endothall) is excellent for egeria, good for hydrilla, poor for elodea
 - They are in the same family
- Proper identification will also indicate if there is an invasive problem or a localized native nuisance

Hydrilla verticillata

Elodea canadensis

Growth Form:

- Growth form is key step in plant ID
- Littoral zone is that area of lakebed that receives enough sunlight for aquatic plants to grow
- Changes seasonally as water clarity changes
 - 3X Secchi Depth
 - Free-floating plants and algae not restricted to littoral zone

How Big is Your Problem?

- For emergent and floating leaf plants, the AREA is the critical calculation needed (with a few exceptions)
- For submersed plants and algae, water VOLUME is the critical calculation needed (some exceptions)
- Software can help with this
 - Google Earth Pro

How Big is Your Problem?

- Spend the time to take 20 or so depth soundings with a rod or sonar across the surface area of a pond
 - Or infested area
- Average these measurements for the avg depth
- Volume = area x avg. depth
 - Ac-ft.

Develop a Management Plan

- Identify problem
- Define management goals
- Select management technique
 - Assess logistics and budget
 - Identify alternatives
- Monitor...monitor some more

• Switch tactics if needed

Develop a Management Plan

- Useful metrics (Collect every 3-4 months):
 - Littoral depth
 - Water temperature
 - Water hardness/alkalinity
 - Plant community
 - %-cover or relative abundance of each spp.
 - Fish harvest/stocking rates
 - Fish feeding rates
- Start collecting before management begins

Aquatic Plant Management Approaches:

- <u>Prevention</u> is Best!
- Biological Control
- Mechanical Control
- Physical Control
- Chemical Control
- Integrated Control

Invasion Process:

- Lag Phase
 - Plants may go unnoticed
 - Eradication possible
- Exponential Growth Phase
 - Usually when management begins
 - Maintenance Management is target
- Carrying Capacity
 - Invasive spp. start to form large monocultures

Geosystems Research Institute

Prevention:

- Prevention is the best plant control technique
- Multiple vectors for invasion
 - Boats and boat trailers
 - Hunting gear (duck decoy rigging)
 - Fishing gear
 - Bait buckets
- Know what's coming into and leaving your pond
 - Inspect gear

Biological Control:

- Purpose is to maintain plant population below nuisance levels
 - Not an elimination technique
- In MS, specific biocontrol agents released for:
 - Alligatorweed
 - Giant salvinia
- General biocontrol agent (grass carp) released for numerous species

Biological Control:

- Grass carp effective on some species
 - Hydrilla
 - Southern naiad
 - Leafy pondweed
- Natural feeding preference
 - "All or none" effect
 - Tends to roam downstream
- Must be restocked after 4-5 yrs.

Mechanical Control:

- Purpose is physical destruction or removal of plants
- Destruction
 - Cutting
 - Rotovating
- Removal
 - Hand Pulling
 - Harvesting
 - Diver-operated suction harvesting

Physical Control:

- Purpose is environmental alteration
- Dredging also mechanical control
- Drawdown
 - Total ecosystem "reset"
- Benthic barrier and dyes
 - Shading

Drawn down lake; kayaker is in central lake channel, surrounding sediment is normally underwater.

Nutrient inactivation

- Purpose is induction of phytotoxic effects for plant death
- Only use EPA approved herbicides with aquatic use language on the label
 - THE LABEL IS THE LAW
 - Only use aquatic approved additives
 - NIS, MSO, & COC
- Off label use is illegal!!
 - Buyer beware when talking to county co-ops

► <u>Systemic</u>:

- ► 2,4-D (Amine)
- ► Bispyribac-sodium
- ► Fluridone
- ► Glyphosate
- Imazamox
- Imazapyr
- Penoxsulam
- ► Triclopyr
- ► Topramezone
- Florpyrauxifen-benzyl

- Carfentrazoneethyl
- Copper
- Diquat
- Endothall
- Flumioxazin
- Algae Specific:
 - Peroxidases

- Foliar Applications
 - Emergent and Floating Plants
- Calculate the area of the infestation, not the area of the waterbody
- Application to leaves above the surface of the water
- Use aquatic-approved surfactant

- Submersed Applications
- Herbicides are applied to water, and plants take up herbicide from water
- Water movement, residence time, and concentration are critical for effective treatment
 - Water flow
 - Tides
 - Wind
 - Temperature
 - Herbicide formulation

- Submersed Applications
- Concentration-Exposure Time Relationships critical for herbicide selection in moving water
- Higher rate = less contact time needed
- Dyes study usually done first

Figure 5. Endothall concentration and exposure time relationships for control of Eurasian watermilfoil. Solid squares represent actual endothall concentration/exposure time (CET) test coordinates. Zones A, B, and C were estimated using these test coordinates. Zone A represents CET combinations that should provide < 70% milfoil control along with a high probability of rapid regrowth within 1 week posttreatment; Zone B represents CET combinations that should provide between 70 and 85% milfoil control with regrowth beginning approximately 3 to 4 wks posttreatment; and Zone C represents CET combinations that should provide 85 to 100% milfoil control with very limited regrowth up to 4 weeks posttreatment.

Figure 6. Endothall concentration and exposure time relationships for control of hydrilla. Solid squares represent actual endothall concentration/ exposure (CET) time test coordinates. Zones A, B, and C were estimated using these test coordinates. Zone A represents these CET combinations that should provide < 70% hydrilla control and a high possibility of rapid regrowth within 1 to 2 weeks; Zone B represents CET combinations that should provide between 70 and 85% hydrilla control with regrowth beginning at 4 to 6 weeks posttreatment; and Zone C represents CET combinations that should provide 85 to 100% hydrilla control with very limited or no regrowth up to 6 weeks posttreatment.

- Herbicide Issues
 - Selectivity and activity
 - Use restrictions
 - Herbicide resistance
 - Herbicide stewardship
 - Regulation—NPDES
- Tank Mixes often used to avoid/mitigate issues above
- Use appropriate rates
 - Don't cut corners on rate calculations

▼: intermediate resistance (7 lakes); ∇ : high resistance (5 lakes) (reprinted with permission of Blackwell Publishing from Michel *et al*⁵).

Integrated Control:

- Combines techniques from 4 control categories
 - Can be cheaper but not always
- Usually attain better, longer lasting control
 - Plant is stressed from multiple directions
- Not always needed or appropriate

- Herbicide Selection
- See the most recent Weed Control guidelines for your state
- Herbicide formulation and rate can affect control efficacy
- Plants may not respond immediately
 - Learn time of symptomology
 - Ask Extension specialist if not sure

Intro to Chemical Control:

- Rivers and Harbors Act 1890'S
 - Water hyacinth
- 2,4-D 1940's
- 16 general use herbicides in aquatics
 - 1 is a dye
 - Peroxides algae
- 100'S of terrestrial use herbicides -2023

Intro to Chemical Control:

- Herbicide Physico-Chemical Properties Differ
- pH sensitive
- Turbidity
- Temperature sensitive
- Systemic vs. contact
- Short vs. long CET
- Foliar vs. submersed activity

Intro to Chemical Control:

- Systemic Herbicides:
 - 2,4-D
 - Bispyribac sodium
 - Florpyrauxifen-benzyl
 - Fluridone
 - Glyphosate
 - Imazamox
 - Imazapyr
 - Penoxsulam
 - Topramezone
 - Triclopyr

- Contact Herbicides:
 - Carfentrazone-ethyl
 - Copper
 - Diquat
 - Endothall
 - Flumioxazin
- Dyes
- Peroxides (algae)

- Adjuvants:
 - Non-ionic surfactants (NIS)
 - Buffering agents
 - Stickers
 - Sinkers
 - Methylated seed oils (MSO)
 - Crop oil concentrate (COC)
 - Markers
 - De-foamers

Environmental Fate:

- Environmental Fate life cycle of a chemical (herbicide) or pollutant after release.
- Why is this important?
 - Can affect human health
 - Paraquat & organ weakening
- Can affect microflora
 - Microbes in soil and water

• Can affect non-target plants

Environmental Fate:

- Factors affecting herbicide fate in environment
 - Water solubility
 - Solubility <-> Adsorption <-> Mobility
 - KOW partition coefficient
 - High = hydrophobic
 - pKa log of dissociation constant of acid
 - Microbial degradation
 - Adsorptive potential
 - KOC measure of attraction of ions/molecules to solid surface (or organic material).
 - Half Life
 - Time to reach one half of original dose.

VERSITY....

STATE

Environmental Fate:

- Factors affecting herbicide fate in environment (cont)
 - Photodecomposition
 - Latitude
 - Season
 - UV light
 - Volatility occurs when herbicide goes from liquid to gas state.
 - Vapor pressure
 - Soil moisture (wetlands)
 - Temperature

Herbicide – half life of 30 min • After 90 min 1/8th of herbicide remains Herbicide 1,000 L 500 L 250 L 125 L $TIME + T_{INF}$ T_0 T_{30min} T_{60min} T_{90min}

• Soil/water chemical properties

Definitions:

- Adsorption attraction, adhesion, or accumulation of herbicides to a substance.
- Photodegradation (photolysis) broken down by sunlight.
- Microbial degradation broken down by microbes (bacteria).
- Hydrolysis broken down by interactions with water.
- Plant uptake taken in by pores on plant tissues (roots, leaves, etc.).
- Sequestration occurs when herbicides placed in a location (usually vacuoles) w/in plants that inhibits
 phytotoxicity due to herbicides.

Definitions:

- Site of Action location in plant where herbicide acts to cause damage.
- Chlorosis (chlorotic) loss of green color in plants (yellowing).
- Necrosis (necrotic) death of plant cells.
- Bleaching plants take on a white color.
- Systemic Herbicide herbicide that translocates (moves) from the site of entry through the plant to the site of action.
- Contact Herbicide herbicide that does not translocate, but rather affects plants at or near the site of entry into the plant.

- <u>2,4-D</u> (2,4-dichlorophenoxy)acetic acid
- Selective for dicots, although 'leaky.'
- Submersed or foliar applications.
- Auxin mimic.
- Acid and ester formulations:
 - Acid root uptake better
 - Ester foliage uptake better
- Symptomology twisting/bending, chlorosis, necrosis, plant death.

	2,4-D
Typical Use Rate (ppm)	0.5 - 4.0
Selectivity	Selective (dicots)
Degradation	Microbial, Photolysis
Half-Life (days)	7 – 48
Mode of action	Auxin mimic, growth regulation
Time to symptomology	Days to weeks
K _{oc} (mL/g)	20 (salt), 100 (ester)
K _{ow}	NA
рКа	2.7

<u>Bispyribac-sodium</u> – 2,6-bis [(4,6-dimethoxy-2pyrimidinyl]oxy) benzoic acid

- Submersed or foliar application.
- Stable at pH 5-9.
- Symptomology: growth stops, chlorosis, necrosis, and plant death.

Bispyribac-sodium	
Typical Use Rate (ppm)	0.015-0.045
Selectivity	Broad spectrum
Degradation	Microbial
Half-Life (days)	~30
Mode of action	Enzyme inhibitor (ALS)
Time to symptomology	Weeks
K _{oc} (mL/g)	852-1793
K _{ow}	-1.03 (logP)
рКа	3.05

<u>Florpyrauxifen-benzyl</u> – 2-pyridinecarboxylic acid, 4-amino-3-chloro-6-(4-chloro-2-fluoro-3ethoxy-phenyl)-5-fluoro-, phenyl methyl ester

- Submersed or foliar application.
- SC Form: 1 PDU = 10 ppb
 - Labeled in SE states of U.S.
- Symptomology: twisting/bending, chlorosis, necrosis, plant death.

Florpyrauxifen-benzyl	
Typical Use Rate (ppm)	0.01-0.05
Selectivity	Broad spectrum
Degradation	Hydrolysis (pH dependent)
Half-Life (days)	111 (pH 7); 1.3 (pH 9)
Mode of action	Auxin mimic, growth regulation
Time to symptomology	Days
K _{oc} (mL/g)	34,200
K _{ow}	NA
рКа	NA

<u>Fluridone</u> – 1-methyl-3-phenyl-5-[3-(trifluoromethyl)phenyl]-4(1H)-pyridinone

- Submersed or foliar application.
- Long CET required at lower rates.
- Symptomology bleaching, chlorotic, plant death.
 - Usually takes weeks to months to gain control of problematic species

Fluridone	
Typical Use Rate (ppm)	0.005-0.030
Selectivity	Broad spectrum
Degradation	Microbial, Photolysis
Half-Life (days)	20+
Mode of action	Inhibits pigment synthesis
Time to symptomology	Days to weeks
K _{oc} (mL/g)	1,000 (avg), ~250 – 2,460
K _{ow}	74
рКа	None

<u>Glyphosate</u> – N-(phosphonomethyl)glycine

- Foliar application.
- 3 formulations:
 - All salts
- Symptomology growth stops, chlorosis, necrosis, and plant death.
 - Witch's broom

Glyphosate	
Typical Use Rate (%)	2 – 5
Selectivity	Broad spectrum
Degradation	Adsorption, Microbial
Half-Life (days)	14+
Mode of action	Enzyme inhibitor (ESPS)
Time to symptomology	Days to weeks
K _{oc} (mL/g)	24,000
K _{ow}	0.0006-0.0017
рКа	2.6, 5.6, and 10.3 (diff forms)

<u>Imazamox</u> – 2-[4,5-dihydro-4-methyl-4-(1methylethyl)-5-oxo-1H-imidazole-2-yl]-5-(methoxymethyl)-3-pyridinecarboxylic acid

- Foliar or submersed application.
- Active in soil.
- Symptomology chlorosis, necrosis, and plant death.

Imazamox	
Typical Use Rate (ppm)	0.050-0.075
Selectivity	Broad spectrum
Degradation	Microbial, Photolysis
Half-Life (days)	7 – 14
Mode of action	Enzyme inhibitor (ALS)
Time to symptomology	Days to weeks
K _{oc} (mL/g)	Weak
K _{ow}	5.36
рКа	2.3, 3.3, & 10.8 (pH 5-9)

<u>Imazapyr</u> – (±)-2-[4,5-dihydro-4-methyl-4-(1methylethyl)-5-oxo1H-imidazole-2-yl]-3pyridinecarboxylic acid

- Foliar application.
- Active in soil.
- Symptomology growth stops, chlorosis, necrosis, and plant death.

Imazapyr	
Typical Use Rate (%)	2 – 5
Selectivity	Broad spectrum
Degradation	Microbial, Photolysis
Half-Life (days)	2 – 4
Mode of action	Enzyme inhibitor (ALS)
Time to symptomology	Days to weeks
K _{oc} (mL/g)	Weak, reversible
K _{ow}	1.3
рКа	1.9 and 3.6

<u>Penoxsulam</u> – 2-(2,2-difluoroethoxy)-6-(trifluoromethyl)-N-(5,8dimethoxy[1,2,4]riazolo-[1,5c]pyrimidin-2yl)benzenesulfonamide

- Foliar or submersed application.
- Active in soil.
- Symptomology chlorosis (possible reddening of veins), necrosis, and plant death.

Penoxsulam	
Typical Use Rate (ppm)	0.01-0.04
Selectivity	Broad spectrum
Degradation	Microbial, Photolysis
Half-Life (days)	15+
Mode of action	Enzyme inhibitor (ALS)
Time to symptomology	Days to weeks
K _{oc} (mL/g)	104
K _{ow}	-0.354
рКа	NA

<u>Topramezone</u> – [3-(4,5-dihydro-isoxazolyl)-2methyl-4-(methylsulfonyl) phenyl](5-hydroxyl-1-methyl-1H-pyrazol-4-yl)methanone

- Foliar or submersed application.
- Active in soil.
- Symptomology bleaching, chlorosis, necrosis, and plant death.

Topramezone	
Typical Use Rate (ppm)	0.005-0.050
Selectivity	Broad spectrum
Degradation	Photolysis
Half-Life (days)	72
Mode of action	Enzyme inhibitor (4-HPPD)
Time to symptomology	Weeks
K _{oc} (mL/g)	22.3-172.4
K _{ow}	1.52
рКа	4.06

<u>Triclopyr</u> – [(3,5,6-trichloro-2pyridinyl)oxy]acetic acid

- Foliar or submersed application.
- Active on woody vegetation.
- Symptomology twisting & bending, growth stops, chlorosis, necrosis, and plant death.

Triclopyr	
Typical Use Rate (ppm)	0.75 – 2.5
Selectivity	Selective (dicots)
Degradation	Microbial, Photolysis
Half-Life (days)	0.5 - 3
Mode of action	Auxin mimic, growth regulation
Time to symptomology	Days to weeks
K _{oc} (mL/g)	20
K _{ow}	2.64, 0.36, & 0.11 (pH 5, 7, 9)
рКа	2.68

<u>Carfentrazone-ethyl</u> – ethyl 2-chloro-3-[2chloro-4-fluoro-5-[4-(difluoromethyl)-4,5diydro-3-methyl-5-oxo-1h-1,2,4- trizol-1yl)phenyl]propanoate

- Foliar or submersed application.
- Early morning applications better.
- Symptomology necrosis and plant death.

Carfentrazone-ethyl	
Typical Use Rate (ppm)	0.2
Selectivity	Broad Spectrum
Degradation	Microbial, Photolysis
Half-Life (days)	3 – 8 (pH dependent)
Mode of action	Enzyme inhibitor (PPO)
Time to symptomology	Days
K _{oc} (mL/g)	750
K _{ow}	3.36
рКа	None

- <u>Copper</u> copper chelate or sulfate
- Foliar or submersed application.
 - Chelates active longer in water
 - Only use in water alkalinity >50 ppm
- Many formulations.
- Symptomology cells become chlorotic, plant/algal death.
 - Commonly used as an algaecide.

Copper	
Typical Use Rate (ppm)	0.2-1.0
Selectivity	Broad spectrum
Degradation	Chemically bound
Half-Life (days)	3 – 8 (pH dependent)
Mode of action	Inhibits photosynthesis
Time to symptomology	Hours to Days
K _{oc} (mL/g)	Moderate (chel), strong (sulf)
K _{ow}	NA
рКа	4.23 (Tri form)

- <u>Diquat</u> 6,7-dihydrodipyrido[1,2-α:2',1'c]pyrazinediium ion
- Foliar or submersed application.
 - Do not use in very turbid water
- Some resistance in Landoltia.
 - Reduced uptake likely
- Symptomology rapid wilting, necrosis, plant death.

Diquat	
Typical Use Rate (ppm)	0.1-0.37
Selectivity	Broad spectrum
Degradation	Adsorption, photolysis
Half-Life (days)	1-7
Mode of action	Inhibits photosynthesis
Time to symptomology	Hours to Days
K _{oc} (mL/g)	1,000,000
K _{ow}	0.000055
рКа	None

- <u>Endothall</u> 7-oxabicyclo[2.2.1]heptane-2,3 dicarboxylic acid
- Submersed or foliar application.
- Recently reclassified as a systemic:
 - Short CET
- 2 formulations:
 - Both salts
- Symptomology defoliation and browning, plant death.

Endothall		
Typical Use Rate (ppm)	0.3 - 3.0	
Selectivity	Broad spectrum	
Degradation	Microbial	
Half-Life (days)	3 – 7	
Mode of action	Inhibits photosyn and cell resp.	
Time to symptomology	Days	
K _{oc} (mL/g)	20 (pH 7), 110-138 (pH 7.8)	
K _{ow}	NA	
рКа	3.4 & 6.7	

<u>Flumioxazin</u> – 2-[7-fluoro-3,4-dihydro-3-oxo-4-(2-propynyl)-2H-1,4-benzoxazin-6-yl]-4,5,6,7tetrahydro-1H-isoin-dole-1,3(2H)-dione

- Foliar or submersed application.
- Very sensitive to high pH waters.
- Symptomology rapid wilting, necrosis, plant death.

Flumioxazin	
Typical Use Rate (ppm)	0.1-0.4
Selectivity	Broad spectrum
Degradation	Microbial, photolysis, hydrolysis
Half-Life (days)	3 – 5 (pH 5), 14 – 22 m (pH 9)
Mode of action	Enzyme inhibitor (PPO)
Time to symptomology	Hours to Days
K _{oc} (mL/g)	13,000
K _{ow}	2.55
рКа	None

Dyes:

- Only 2 registered with EPA for control of aquatic vegetation.
- > 2-3 ft depth needed.
- Absorbs and/or reflects sunlight thus inhibits photosynthesis.
- Need to re-apply monthly

Dye	
Typical Use Rate (ppm)	1 - 2
Selectivity	Broad spectrum
Degradation	NA
Half-Life (days)	Variable
Mode of action	NA (inhibits photosynthesis)
Time to symptomology	Days
K _{oc} (mL/g)	NA
K _{ow}	NA
рКа	NA

Adjuvants:

 Non-ionic (NI)/ NI + N/ Organosilicon surfactant

• Activators

 Crop/vegetable/methylated seed oil concentrates Buffering/conditioning agents

• Anti-foam agents

 Deposition/Spreader/Stickers/ Sinking agents

• Tank cleaners

Final Thoughts:

- Develop a management plan
 - "Measure twice, cut once"
- Define management goals
 - Think twice if management is irreversible or long-term
 - Grass carp, fertilizer
- MONITOR!!
 - Change tactics if techniques don't work

Web Sites

FEDERAL GOVERNMENT

- Aquatic Plant Control Research Program
 - www.wes.army.mil/el/aqua/aqua.html
- USDA Plants
 - www.plants.usda.gov

STATE GOVERNMENT

- Mississippi Department of Agriculture and Commerce
 - www.mdac.state.ms.us
- Mississippi Department of Wildlife, Fisheries and Parks
 - www.mdwfp.com

• UNIVERSITY

- Center for Aquatic and Invasive Plants
 - aquat1.ifas.ufl.edu
- Mississippi State University Extension
 - msucares.com

PROFESSIONAL SOCIETY

- MidSouth Aquatic Plant Management Society
 - www.msapms.org

FOUNDATION

- Aquatic Ecosystem Restoration Foundation
 - www.aquatics.org

Questions

Gray Turnage, PhD Assistant Res/Ext Professor Mississippi State University Geosystems Research Institute Ph: 662-325-7527 E-mail: Gturnage@gri.msstate.edu

www.gri.msstate.edu

