

Effect of ocean acidification on deep sea spotted ratfish *Hydrolagus colliei*: physiological consequences on acid-base balance, ion-regulation and nitrogenous waste dynamics

Jyotsna Shrivastava (Jo)

University of Antwerp **Belgium, Europe**

Overview

> Introduction

> Methodology

➢ Results

Discussion

Conclusion

Ocean acidification

The decrease in the pH of earth's oceans caused by the uptake of CO_2 from atmosphere.

Ocean acidification

The pH Scale

pH scale is logarithmic meaning a difference of one pH unit is equal to a ten-fold change in acidity.

A small change in pH is equal to a LARGE change in acidity.

Experimental fish species

Taxonomical classification

(cartilaginous fish)

Elasmobranchii

Sharks, rays and skates

Holocephali (primitive fish)

Chimeras

Ratfish, Rabbitfish and elephant fish

 \rightarrow Ratfish are non-elasmobranchs cartilaginous fish

Introduction

Morphological Characteristic of Ratfish

- It is a chimaera found in the north-eastern Pacific Ocean.
- It is most common between 200 and 400 m below sea level.
- This cartilaginous fish gets its characteristic name from a pointed rat- like tail.
- They have a venomous spinelocated at their dorsal fin whichis used in defense.

Introduction...

Ocean acidification / Hypercapnia (increase in CO₂ level)

-ambient CO₂ levels induce a respiratory acidosis in a number of fish species-Blood pH is compensated by

Background

- Among Cartilaginous fish, the most extensive studies on acid-base regulation during ocean acidification (hypercapnia) are done in elasmobranch -typically the spotted dogfish (Randall et al., 1976; Heisler et al. 1976).
- Dogfish are able to compensate ocean acidification induced acidosis very quickly by
 - by extracting HCO_3^{-1} from the surrounding water
 - Increasing the rate of H⁺ excretion and/or
 - elevating NH_4^+ excretion

→ Overall, suggesting dogfish and also teleosts are efficiently regulator of acid/base balance during hypercapnic events.

→ Till date, no study has been done in non-elasmobranch cartilaginous fish (e.g. ratfish)

Objectives

Experimental Site:

Bamfield Marine Science Research Centre, Canada

Experimental design

- Test species: Ratfish
- Exposure to 1.5% PCO₂ (15,000 ppm)

- Exposure period: Pre-exposure (0 h), 4 h, 12h, 24 h and 48 h
- At the end of each exposure period fish (n=6) were sacrificed.
- Water samples were taken at each time point (and some intermediate points) at an interval of 4 hrs.

-Cannulation!!!!!!

the arterial/venous tension is too low

Experimental set up

- ➢ Flux box of 20 L (flux vol. 16L)
- ➢ Fish were acclimated overnight in the box.
- CO₂ level was controlled by an automated Loligo CO₂ system via CapCTRL software.

Blood pH

Plasma TCO₂

Blood pH and Plasma TCO₂

→Extracellular pH was not restored to control level

Intracellular pH: **RBC**

→ pH level in RBC was strictly maintained with in control level

Intracellular pH: Hepatic tissue

→ Similar to RBC, pH in liver cells were strictly maintained with in control level

Suggesting that intracellular pH was maintained quite well (contrast to extracellular pH)

Ammonia excretion rate

→ Ammonia excretion rate did not contribute to reduce extracellular acidosis

H⁺ excretion rate

→A slight (and temporary) increment was revealed

Na⁺ level

Osmolality

 \rightarrow Similar to Na⁺ concentration, osmolality remained unchanged

Discussion

Extracellular pH (blood pH) was not compensated

- -Level remained below control level
- Fish seems to suffer acidosis in extracellular fluid.
- > Intracellular pH (RBC and liver cell) was regulated efficiently

-suggesting that ratfish prioritize intracellular pH over extracellular pH

Ratfish does not seem to utilize ammonia excretion pathway to cope with acidosis.

Plasma sodium concentration (and H⁺ excretion) remains constant throughout the experiment

-does not favor the Na^+/H^+ exchange as the operative mechanism in ratfish

Conclusion

Ratfish seems to be a poor acid-base regulator during ocean acidification (hypercapnia).

- Net bicarbonate uptake from the environment might be the compensation of the intracellular acidosis.
- Additional bicarbonate is gained by active $HCO_3^-/C1^-$ ion exchange.

Thanks to

Prof. Gudrun De Boeck, Prof. Ronny Blust and others.....

