Modeling range expansion of Northern Snakehead in Arkansas

Shannon Smith¹, Justin Homan², Micah Tindall², Steve Lochmann¹ ¹University of Arkansas at Pine Bluff, Pine Bluff, AR ²Arkansas Game and Fish Commission, Brinkley, AR

Acknowledgements

>University of Arkansas at Pine Bluff

Arkansas Game and Fish Commission

 Voracious predators
 Prefer backwater habitats

➤"Successful invader"

Sorting Out Snakeheads

COMPARING THE NORTHERN SNAKEHEAD TO THE NATIVE BOWFIN

Breeding
 population
 confirmed April
 2008

Continue to expand their range

Where did they start?

Where are they now? Where will they go?

Evaluate spatial trends in range expansion from 2008 to 2017

➤Calculate expansion area from 2008 to 2017

Create preliminary models to predict probability of expansion into new areas

>Evaluate spatial trends in range expansion from 2008 to 2017

➤Calculate expansion area from 2008 to 2017

Create preliminary models to predict probability of expansion into new areas

Snakehead data

Location (GPS) data from AGFC database 2008 – 2017
No 2012 – 2013 reports

 Operation Mongoose, verified citizen reporting, state and federal agency reporting
 Non-verified locations were excluded from analyses

Locations by year

Standard deviational ellipses
 Encompass 95% of data points

2008 – Piney Creek drainage

- 2008 Piney Creek drainage
- 2009 Big Creek drainage

- ≻ 2008 Piney Creek drainage
- 2009 Big Creek drainage

- 2008 Piney Creek drainage
- ≻2009 Big Creek drainage
- ≻2011 Cypress Bayou

- 2008 Piney Creek drainage
- ≻ 2009 Big Creek drainage
- ≻2011 Cypress Bayou
- 2014 East Flat Fork Creek, moving towards L'Anguille, White

- 2008 Piney Creek drainage
- ≻ 2009 Big Creek drainage
- ≻2011 Cypress Bayou
- 2014 East Flat Fork Creek, moving towards L'Anguille, White

2015 - Little Cypress Creek, White River, Caney Creek, ditches near Cache River

- 2008 Piney Creek drainage
- ≻ 2009 Big Creek drainage
- ≻2011 Cypress Bayou
- 2014 East Flat Fork Creek, moving towards L'Anguille, White

- 2015 Little Cypress Creek, White River, Caney Creek, ditches near Cache River
- 2016 L'Anguille River, DeView Bayou, Lick Creek, towards Bayou Des Arc

- 2008 Piney Creek drainage
- ≻ 2009 Big Creek drainage
- ≻2011 Cypress Bayou
- 2014 East Flat Fork Creek, moving towards L'Anguille, White

- 2015 Little Cypress Creek, White River, Caney Creek, ditches near Cache River
- 2016 L'Anguille River, DeView Bayou, Lick Creek, towards Bayou Des Arc
- 2017 Cache Bayou, between White and Arkansas Rivers, across Mississippi River

Expansion from 2008 - 2017

Estimated occupied area in 5 years

≻Evaluate

➤Calculate

Create pi into new a

Maximum entropy modeling (Phillips et al. 2006) 3 to 2017

pansion

Phillips SJ, RP Anderson, RE Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231-259

Maxent explained

> Probability of presence for a species based on environmental constraints and known occurrence locations
 > Presence-only data
 > Environmental predictors across landscape of grid cells
 > Results averaged over multiple runs
 > Evaluation → area under the receiver-operator curve (AUC)

Maxent model parameters

>N = 28 (from 2008 - 2017) \succ Landscape = AR and MS >3-fold crossvalidation \succ Environmental variables: ≻Land cover ➤Crop type cover >Annual precipitation (mean) >Minimum air temperature (mean) >Maximum air temperature (mean)

Maxent model

Maxent model evaluation

Mean AUC = 0.661 0.661 > 0.5 (random)

Maxent model summary

Variable importance
 Crop/land cover – 71.4%
 Deciduous forest, crops, wetlands
 Rice, soybeans, fallow/idle

Min. temperature – 25.2%52 and below

Max. temperature – 3.4%
Annual precipitation – 0%

Conclusions

- >Expansion rapid, following drainages
- Modeling can indicate what areas may be more susceptible to colonization
- >Inform monitoring and eradication efforts

Future models

Further optimization
 Environmental predictors
 Elevation
 Another indicator of annual discharge/river stage
 Movement patterns (Micah Tindall's research)

Thanks!

Contact: Shannon Smith smithscf@uapb.edu

Maxent model

10th percentile threshold

Excludes the 10% of localities with lowest values

Equations- Phillips et al. 2017

>Probability of presence of the species within a quadrat (according to IPP):

Probability of presence = $1 - \exp(-c_p A \exp(\alpha + \beta' x(z)))$

Where $exp(\alpha+\beta'x(z))$ is spp occurrence from IPP as loglinear function of real-valued features x(z) and α is normalizing constant and β is the coefficient

Cloglog transform probability of presence:

Probability of presence = $1 - \exp(-\exp(H)p_{\lambda}(z))$

Where $p_{\lambda}(z)$ is probability density based on IPP