Evaluation of Low-frequency Electrofishing Pulse Rates for Sampling Blue Catfish (Ictalurus furcatus)

Charlie Jordan*1, Tony Fernando2, and Joseph Stoeckel1

1: Arkansas Tech University, Russellville, AR 2: Arkansas Game and Fish Commission, Russellville, AR Acknowledgements

- ATU
 - Dr. Joe Stoeckel
 - Dr. John Jackson
 - Technicians
- AGFC
 - Tony Fernando
 - Blair Harvey

Blue Catfish

Largest N. American catfish

- Found in large rivers and reservoirs
 - Introduced throughout America

Highly sought after by commercial and sport anglers

Sampling

- Gill nets
 - Low catch rates
 - Biased against fish <250mm
- Hook and line
 - Effective for catching fish >635mm
 - Low catch rates

Photo courtesy of Peter Leonard

Sampling

- Low-frequency electrofishing
 - Electrofishing with <30 pps
 - Most effective form of sampling
 - Odd surfacing response
- Improvements in electrofishing technology
- Need to standardize sampling

Objective

- Evaluate low-frequency electrofishing pulse rates for sampling Blue Catfish
 - 7, 10, 12, and 15 pps

Photo courtesy of Zach Moran

Study Area

Winthrop Rockefeller Lake (Pool 9)

Sampling Methods

- Four pulse rates were selected to be evaluated
 - 7, 10, 12, and 15 pulses/sec (pps)
 - Test difference in catch rate and length frequency
- 20 wing dikes were randomly selected in Pool 9
 - All wing dikes sampled once with each pulse rate
 - Four day rest period between sample runs

Sampling was conducted in July 2017

Sampling Methods

Electrofishing was conducted with a Midwest Infinity Box

• 200V, 35% duty cycle, and ~30A

- Sample runs lasted 5 min
- Move in the direction of the highest concentration of fish
- Total length was recorded to nearest mm

Statistical Analysis

- Catch Rate
 - Calculated as fish/minute and transform using Log₁₀(n+1)
 - One-way repeated measures ANOVA with Bonferronis post hoc test
- Length Frequency
 - Kolmogorov-Smirnov test
- All values considered significant at α<0.05

Results

Temperature 28.7-31.7 C

• Conductivity 537-712 μS

Total of 691 fish collected

Total Catch

Catch Rate

F_{3, 54}= 4.06, P=0.01

Length Frequency

Length Frequency

Conclusion

- 12 pps is most efficient pulse rate for collecting Blue Catfish
 - Use 12 pps when possible
 - Use a combination of 7 and 15 pps, if 12 pps is not possible

Future Needs

Evaluate pulse rates at different conductivities

Evaluate pulse rates in other lotic environments

Evaluate pulse rates in a lentic systems

Evaluate different duty cycles

Standardize pulse rates for other catfish species

Questions

