Analysis of AGFC Historical Crappie Trap-Netting Data

Aaron Kern and Andy Yung Arkansas Game and Fish Commission District 6 Fisheries Camden, AR

Introduction

- Important fishery in Arkansas waters
 - AGFC (2017)
 - 26% of anglers listed Crappie as 1st choice
 - Second in popularity to Bass
 - Duda et al. (2000)
 - Most popular fishery with senior anglers (44%)
 - Anglers spent \$92.6 million annually angling for Crappie
- Crappie Stock Assessment-Colvin and Vasey (1986)
 - White Crappie in large Missouri reservoirs
 - Population structure indices
- Missouri's method modified to fit Arkansas waterbodies
 - Mixed White and Black Crappie populations-managed as 1
 - Large highland reservoirs-small oxbow lakes

Introduction

Arkansas Crappie Population Assessment-AGFC (2013)

- Developed using trap net data from 15 AR lakes
- Collected during 1989-1993
- Values assigned for ranges of 5 population structure parameters
- Overall Assessment Score
- 5 Population Structure Parameters
 - Recruitment: # Age-1+/Net Night
 - Density: # Age-1 or Greater/net night
 - Age Structure: % Age-3 or greater
 - Size Structure: % 250-mm or greater
 - Growth Rate: mm at Age-2+

Methods

6 metrics compiled and summarized across 6 Ecoregions

- 5 Population Structure Parameters
- Overall Assessment Score (0-100)
- Test for normal distribution of parameter data
 - Histrograms, boxplots, Shipiro-Wilk Tests
 - Percentages, ratios, skewed, outliers, etc...
 - Normal Distribution: Assessment Score, Growth Rate
- Test for differences in metrics by Ecoregions
 - Non-Normal: K-W test with Dunn pairwise post-hoc test
 - Normal: ANOVA with Tukey HSD pairwise post-hoc test
- Test for differences in parameters by Species
 - Non-Normal: Mann-Whitney test
 - Normal: Welch's 2-sample t-test

Major Ecoregions in Arkansas

Map courtesy of the Arkansas Natural Heritage Commission

Methods

Recruitment by Ecoregion

KW test: p < 0.001</p>

- Highly significant differences between ecoregions detected
- Arkansas Valley~Coastal Plains
- Arkansas Valley~Ouachita Mountains
- Crowley's Ridge~Ouachita Mountains
- MS Alluvial Plain~Ouachita Mountains

Density by Ecoregion

• KW test: p = 0.0015

- Significant differences between ecoregions detected
- AR Valley~Ozark Mountains
 AR Valley~Coastal Plains
 AR Valley~Ouachita Mountains

Age Structure by Ecoregion

• KW Test: p = 0.553

 No significant differences between ecoregions detected

Size Structure by Ecoregion

Size Structure

• KW Test: p = 0.005

 Significant differences between ecoregions detected

AR Valley~MS Alluvial Plain

Growth Rate by Ecoregion

Growth Rate a 300 mm at Age 2+ 250 200 150 Coastal Plains Ozark.Mountains MS.Alluvial.Plain Crowleys.Ridge Ouachita.Mountains Arkansas.Valley

• ANOVA: p = 0.165

 No significant differences between ecoregions detected

Assessment Score by Ecoregion

Assessment Score

• ANOVA: p < 0.001

 Highly significant differences between ecoregions detected

 AR-Valley~All other ecoregions

Breather and Shift Gears

- Done with Ecoregion Analysis
- Lots of boxplots
- Some significant differences
 - Arkansas Valley
 - Density/Recruitment
- Lets look at BLC v WHC
 - Species dominance by lake
- Differences in Assessment Score parameters by species?

Recruitment: BLC v WHC

Mann-Whitney test: p < 0.001</p>

 Highly significant difference detected

Density: BLC v WHC

Mann-Whitney test: p < 0.001 Highly significant difference detected

Age Structure: BLC v WHC

Mann-Whitney test: p = 1.0

 No significant difference detected

Size Structure: BLC v WHC

Mann-Whitney test: p=0.005Significant difference detected

Growth Rate: BLC v WHC

Welch t-test: p=0.463

 No significant difference detected

Assessment Score: BLC v WHC

Welch t-test: p < 0.001</p>

 Highly significant difference detected

Discussion

 Significant differences clustered around Density, Recruitment and Assessment Score

- Same trends in Ecoregion and BLC v WHC analysis
- Focus on BLC v WHC Assessment Score
- Boxplot differences obvious in data range and median values
- What could be driving this?
 - Assessment Score calculations weighted
 - Favor Growth Rate, Age Structure, Size Structure
- BLC values for these parameters
 - Similar to or better than WHC in boxplots
 - Size Structure significantly different
 - Value favors BLC
- Density and Recruitment
 - Boxplots show large differences
 - Highly statistically significant

Discussion

- Are Density and Recruitment valued too highly?
 - Problem: Vagaries of netting CPUE
 - Already given less weight in Assessment Score calculation
 - Effect can still multiply throughout score calculation
 - Unintended effects on Assessment Score calculation
- May skew score + for WHC lakes and for BLC lakes
 - BLC/WHC similar in other Assessment Score parameters
 - 12 WHC-dominant lakes scored 60-100 on Assessment Score
 - 1 BLC-dominant lake > 60 on Assessment Score
- Arkansas Crappie Population Assessment
 - Growth Rate, Size Structure, Age Structure
 - Sufficient to describe population structure/dynamics?
 - Density/Recruitment by proxy
 - Catch Curve residuals

Place even less importance on CPUE data?

Questions?

